

Max Edges: $\frac{n(n-1)}{2}$ in $n=11$

$$
\begin{gathered}
=\frac{11(10)}{2}=55 \\
\text { Density }=\frac{15}{55}=0.2727
\end{gathered}
$$

Max
Degree: $\operatorname{degree}\left(v_{0}\right)=7$

$$
\begin{aligned}
& \operatorname{degrce}\left(v_{5}\right)=6 \\
& \operatorname{degree}\left(v_{10}\right)=1
\end{aligned}
$$

Degree Centrality for:

$$
\begin{aligned}
& v_{0} \Rightarrow \text { degree }\left(v_{0}\right)=c_{0}^{d}=\sum_{j=0}^{n} a_{0 j}=7 \\
& v_{1} \Rightarrow \text { degree }\left(v_{1}\right)=c_{1}^{d}=\sum_{a_{i j}}=3
\end{aligned}
$$



$$
v_{5} \Rightarrow \text { degree }\left(v_{5}\right)=c_{5}^{d}=\sum a_{5 j} ; 6
$$

$$
\begin{aligned}
v_{6} \Rightarrow \text { degree }\left(v_{6}\right) & =c_{6}^{d}=\sum a_{6 j}=2
\end{aligned}
$$

$\sum_{i} K_{i}=30$, Edge Count: $\sum k / 2=15$

$$
v_{q} \Rightarrow \text { degree }(u g)=\begin{aligned}
& 6=2 a_{6 j}=2 \\
& c_{q}^{d}=\sum a_{i j}=1
\end{aligned}
$$

Normalized Degree Centrality:

$$
\bar{c}_{i}^{d}=c_{i}^{d} / n-1, \max _{i} \bar{c}_{i}^{d}=c_{0}^{d} / 11-1=7 / 10=0.7
$$

Closeness Centrality:
A so called the
$v_{0} \Rightarrow \operatorname{farness}\left(v_{0}\right)=\sum_{j \neq 0} \stackrel{C}{ }$ shortest_ distance $\left(v_{0 j} v_{j}\right)=$
Repeat tor
shortest_distance $\left(v_{0}, v_{1}\right)+\longleftarrow\left|\left(v_{0}, v_{1}\right)\right|_{1}^{\downarrow \text { rath }}=\sum^{\text {peng th }}$
shortest_ distance $\left(v_{0}, v_{2}\right)+\leftarrow\left|\left(v_{0}, v_{2}\right)\right|=1$
shortest_ distance $\left(v_{0}, v_{3}\right)+\leftharpoonup\left|\left(v_{0}, v_{3}\right)\right|=\mid$
shortest_ distance $\left(v_{0}, v_{4}\right)+\leftarrow\left|\left(v_{0}, v_{4}\right)\right|=1$
shortest_distance $\left(v_{0}, v_{5}\right)+\leftarrow\left|\left(v_{0}, v_{5}\right)\right|=1$
shortest_ distance $\left(v_{0}, v_{0}\right)+\leftharpoonup\left|\left(v_{0}, v_{5}\right),\left(v_{5}, v_{0}\right)\right|=2$
shortest_ distance $\left(v_{0}, v_{7}\right)+\leftharpoonup \mid\left(v_{0}, v_{5}\right),\left(v_{5}, v_{6}\right),\left(v_{0}, v_{7}\right)==3$
shortest_ distance $\left(v_{0}, v_{8}\right)+\leftarrow\left|\left(v_{0}, v_{8}\right)\right|=1$
shortest a distance $\left(v_{0}, v_{q}\right)+\leftarrow\left|\left(v_{0}, v_{q}\right)\right|=1$
shortest_ distance $\left.\left(v_{0}, v_{10}\right)+\leftarrow \left\lvert\, \begin{array}{l}\left(v_{0}, v_{5}\right),\left(v_{5}, v_{6}\right), \\ \left(v_{0}, v_{7}\right),\left(v_{v}, v_{10}\right)\end{array}\right.\right)=4$

$$
\begin{gathered}
=1+1+1+1+1+2+3+1+1+4=16 \\
\text { Closeness }\left(v_{0}\right)=1 / f_{\text {arses }}\left(v_{0}\right)=1 / 16
\end{gathered}
$$

$v_{j} \Rightarrow \operatorname{farness}\left(v_{j}\right)=\sum_{j \neq 5}$ shortest-distance $\left(v_{5}, v_{j}\right)$

$$
\begin{aligned}
& =1+1+1+1+1+1+2+2+2+3=15 \\
& \text { closeness }\left(v_{5}\right)=1 / \text { furness }\left(v_{5}\right)=1 / 15
\end{aligned}
$$

Normalized Closeness:

$$
\begin{aligned}
& \text { ed Closeness: } \\
& \begin{array}{l}
\text { closeness }\left(v_{c}\right)=(n-1) \cdot \text { closeness }\left(v_{0}\right)=10 / 16=5 / 8=0.625 \quad \text { Max closeness } \\
\overline{\text { closeness }}\left(v_{s}\right)=(n-1) \cdot \text { closeness }\left(v_{5}\right)=10 / 15=2 / 3=0.6667 \text { centrality }
\end{array}
\end{aligned}
$$

Betweenness Ccutralityi:
Betweenness Centrality'i
Btw $\left(v_{0}\right)=\sum_{j, k \neq 0} \frac{\sigma_{j k}(v .)}{\sigma_{j k}} \notin \sigma_{j k}$ is the \# of shortest paths
between $v_{j}+v_{k}$.
$\sigma_{j k}\left(v_{0}\right)$ is $\#$ of shortest paths
First need all pairs of nodes excluding $v_{0}$ : between $v_{j}+v_{k}$ going through $v_{0}$.

$$
\begin{aligned}
& \left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right),\left(v_{1}, v_{5}\right),\left(v_{1}, v_{6}\right),\left(v_{1}, v_{9}\right),\left(v_{1}, v_{8}\right),\left(v_{1}, v_{9}\right),\left(v_{2}, v_{10}\right) \\
& \left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{2}, v_{5}\right),\left(v_{2}, v_{6}\right),\left(v_{2}, v_{9}\right),\left(v_{2}, v_{8}\right),\left(v_{2}, v_{9}\right),\left(v_{2}, v_{10}\right) \\
& \vdots \text { etc. }
\end{aligned}
$$

$\sigma_{12} \leftarrow$ how many shortest paths are there between $v_{1}+v_{2}$ ?
Answer: Just 1 since they are adjacent.

$$
\sigma_{12}=1
$$

$\sigma_{12}\left(v_{0}\right) \notin$ how many shortest paths btw $v_{1}+v_{2}$ go through $v_{6}$ ?
Answer! None

$$
\begin{gathered}
\sigma_{12}\left(v_{0}\right)=0 \\
\therefore \frac{\sigma_{12}\left(v_{0}\right)}{\sigma_{12}}=0 / 1=0
\end{gathered}
$$

Repeat for all pairs. Example continues $w / \frac{\sigma_{58}\left(v_{0}\right)}{\sigma_{58}}$

$$
\begin{aligned}
& \sigma_{58}=\left|\left(\left(v_{5}, v_{0}\right),\left(v_{0}, v_{8}\right)\right)\right|=1 \\
& \sigma_{58}\left(v_{0}\right)=1 \\
& \therefore \frac{\sigma_{58}\left(v_{0}\right)}{\sigma_{38}}=1 / 1=1
\end{aligned}
$$

Note:
$v_{5} \rightarrow v_{1} \rightarrow v_{0} \rightarrow v_{8}$ is a path but not the shortest path

You can build a matrix here for $\sigma_{i j}$ to count shortest paths

$$
\begin{aligned}
& \text { (v, s th with } \\
& \text { both th }
\end{aligned}
$$

$$
\begin{aligned}
& \text { both } \\
& \text { ling th }
\end{aligned}
$$

$$
2
$$

$$
\text { Matrix } B\left(v_{0}\right)=\frac{\sigma\left(v_{0}\right)}{\sigma} \Rightarrow b_{j k}=\frac{\sigma_{j k}\left(v_{0}\right)}{\sigma_{j k}}
$$



Again, exclude so
Can quickly fill in calls with zero in

Normalize Btwn $\left(v_{0}\right)$ w/ $\frac{2}{(n-1)(n-2)}$, or all pairs excluding $v_{0}$

$$
\overline{B \tan (00)}=\frac{2 \cdot 19.5}{10 \cdot 9}=10^{9.5} / 45=0.4333
$$

Repeating Betweenness Centrality for $v_{5}$ :


$$
\begin{aligned}
& \text { Btwu }\left(v_{3}\right)=\sum_{j, k \neq 0} \frac{\sigma_{i k}\left(v_{5}\right)}{\sigma_{j k}}=\sum_{j, k \neq 0} B\left(v_{5}\right)=21(1)+5(1 / 2) \\
& \text { Normalized Stun }\left(v_{5}\right)=\frac{2.23 .5}{10.9}=\frac{23.5}{45}=0.5=23.5 \\
&
\end{aligned}
$$

Vertex $v_{s}$ has the highest betweenness centrality.

Below is a table that includes centrality scores for each node in the graph.

| Normalized Centrality Scores |  |  |  |
| ---: | ---: | ---: | ---: |
| Id | Betweenness | Closeness | Degree Centrality |
| $\mathbf{0}$ | 0.433333 | 0.625 | 0.7 |
| $\mathbf{5}$ | 0.522222 | 0.666667 | 0.6 |
| $\mathbf{6}$ | 0.355556 | 0.5 | 0.2 |
| $\mathbf{1}$ | 0 | 0.5 | 0.3 |
| $\mathbf{2}$ | 0 | 0.5 | 0.3 |
| $\mathbf{3}$ | 0 | 0.47619 | 0.2 |
| $\mathbf{4}$ | 0 | 0.47619 | 0.2 |
| $\mathbf{7}$ | 0.2 | 0.37037 | 0.2 |
| $\mathbf{8}$ | 0 | 0.4 | 0.1 |
| $\mathbf{9}$ | 0 | 0.4 | 0.1 |
| $\mathbf{1 0}$ | 0 | 0.277778 | 0.1 |

