

Max Edges:
$$\frac{n(n-1)}{2}$$
 h $n=11$

$$= \frac{11(10)}{2} = 55$$

degree (v5) = 6 degree (v,0) = 1

Degree Centrality for:

$$V_0 \Rightarrow degree(v_0) = c_0^2 = \sum_{j=0}^{\infty} a_{0j} = 7$$
 $V_1 \Rightarrow degree(v_1) = c_1^2 = \sum_{j=0}^{\infty} a_{0j} = 3$
 $V_5 \Rightarrow degree(v_5) = c_6^2 = \sum_{j=0}^{\infty} a_{0j} = 3$
 $V_5 \Rightarrow degree(v_6) = c_6^2 = \sum_{j=0}^{\infty} a_{0j} = 2$
 $V_6 \Rightarrow degree(v_9) = c_6^2 = \sum_{j=0}^{\infty} a_{0j} = 2$
 $V_9 \Rightarrow degree(v_9) = c_9^2 = \sum_{j=0}^{\infty} a_{0j} = 2$

Adjacency Matrix:

	0	()	2 5	3 9	1 5	, ₍	, 7	8	٩	1	0.
اً ٥	0	7	(1	\	1	0\0	0		1	0
l	(O	l	0	0	1	0	0	O	0	0
2.	ĺ	1	0	0	O	1	ס	0	0	ð	ે
3	(0	0	0	٥	l	O	6	В	Ø	0
4	1	0	0	0	B	l	0	0	6	0	0
5	\	l	l		l	0	1	0	t	- 0	0
6	0	0	0	O	0	1	6	> l		0 0	0
7	8	0	0	0	ව	0		$ \cdot $	0	0 0	1
ે	l	8	0	0	0	C	9 (0	~	+	+
9	1	0	O	O	0	j	0	0 0			0 0
10	0	() (2		0	0	0		0	0 0 0
レニ	12	1	3	3/	2	7	ſ _o	7	1 2	1	ر_ ارا

ZK; = 30, Edge Count:

$$\vec{c}_{i} = \frac{c_{i}^{d}}{n-1}, |\max \vec{c}_{i}| = \frac{c_{o}^{d}}{n-1} = \frac{7}{10} = 0.7$$

(loseness (entrality) also called the "geodesic" ("geodesic" (Voj Vj) = Vo=) farness(vo) = \(\subseteq \text{shortest_distance} \text{(Voj Vj)} = \(\subseteq \text{(Voj Vj) shortest_distance (vo, vi) = Edges on shortest shortest_distance (vo, vi) + = |(vo, vi)| = | Kobert for all Vin Oraitted shortest_distance (vo, vz) + (vo, vz) = 1 vere space proservation. shortest_distance (vo, v3) + (vo, v3) | 1 shortest_distance $(v_0, v_y) + \leftarrow |(v_0, v_y)|^{-1}$ shortest_distance $(v_0, v_5) + \leftarrow |(v_0, v_5)|^{-1}$ shortest_distance (vo, va) + (vo, vs), (vs, vb), (va, va)=3 shortest_distance (vo, v8) + (vo, v8) = shortest_distance (vo, vg) + (vo, vq) = 1 shortest_distance (v_0, v_{i0}) + $(v_0, v_5), (v_5, v_6), [-4]$ = [+|+|+|+2+3+|+|+4=|6|Closeness (vo) = /facress(vo) = /16 v5 =) Carness (v5) = = shortest_distance (v5) vj) = |+ |+ |+ |+ |+ |+ 2+2+2+3 = 15 cluseness (uz) = /furness(uz) = /15

Normalized Closeness:

```
Betweenness Centrality;
                                       Tix is the # of shortest paths
 Btun (v_0) = \sum_{j,k\neq 0} \frac{\sigma_{jk}(v_0)}{\sigma_{jk}}
                                        between vj + vK.
                                       Jik (Vo) is the of shortest paths
      first need all pairs of nodes excluding vo:
                                            between vituk going through vo.
    (V1, V2), (V1, V3), (V1, V4), (V1, V5), (V1, V6), (V1, V8), (V1, V4), (V1, V4), (V1, V4)
             ( \(\nu_2, \nu_3\), (\(\nu_2, \nu_4\), (\(\nu_2, \nu_5\), (\(\nu_2, \nu_6\), (\(\nu_2, \nu_8\)), (\(\nu_2, \nu_8\)), (\(\nu_2, \nu_4\), (\(\nu_2, \nu_6\))
        Fize Low many shortest paths are there between v, +v2?
              Auswer: Just 1 since they are adjacent.
       (12 (vo) 2 how many shortest paths blun v, &vz go through vo?
           Answer! None
          J<sub>12</sub> (,,) = 0
     \frac{\overline{U_{12}(v_0)}}{\overline{U_{12}}} = 0 = 0
 Repeat for all pairs. Example continues v/ 588 (vo)
    (158 (100) = 1
   : O38 = /1 = /
```

2 because two slortest (v. 1/5) (vs 1/3)) & 7/8 " build a matrix here for You can paths Wie Wood ions th 12 00 12345678 0 O l l l 2 \bigcirc l 1 5 = 0 0 9 0 1 10 Symmetric Matrix [Exclude so 78 (10. 0 1 2 3

from its own shortest paths. Matrix of Paths shortest voices 12345678 0 0 l O 0 0 6 Đ 0 l 0 1 0 1 O \bigcirc 0 0 00 0 0 0 1 0 $O\left(\Lambda^{0}\right)^{2}$ 0 0 Note you can can for sell for any rodor assert rodor. 0 1 ا ا ۞ 0 1

Matrix
$$B(v_0) = \frac{\sigma(v_0)}{\sigma} \Rightarrow b_{jk} = \frac{\sigma_{jk}(v_0)}{\sigma_{jk}}$$

B+wn $(v_0) = \sum_{j,k\neq 0} \frac{\sigma_{jk}(v_0)}{\sigma_{jk}} = \sum_{j,k\neq 0} B(v_0) = 17(1) + 5(1/2) = 19.5$

Normalize Btwn (vo) w/ 2 (n-1)(n-2), or all pairs excluding vo

Repeating Betweenness Centrality for No:

$$B_{1}+\omega_{1}(v_{3})=\sum_{j,k\neq 0}\frac{\sigma_{jk}(v_{5})}{\sigma_{jk}}=\sum_{j,k\neq 0}B(v_{3})=21(1)+5(1/2)$$

$$=21+2.5=23.5$$

001

Vertex vs has the highest betweenness centrality.

Below is a table that includes centrality scores for each node in the graph.

Normalized Centrality Scores

ld	Betweenness	Closeness	Degree Centrality
0	0.433333	0.625	0.7
5	0.522222	0.666667	0.6
6	0.35556	0.5	0.2
1	0	0.5	0.3
2	0	0.5	0.3
3	0	0.47619	0.2
4	0	0.47619	0.2
7	0.2	0.37037	0.2
8	0	0.4	0.1
9	0	0.4	0.1
10	0	0.277778	0.1